On the effect of flat energy directors thickness on heat generation during ultrasonic welding of thermoplastic composites

نویسندگان

  • Genevieve Palardy
  • Irene Fernandez Villegas
چکیده

This paper presents a detailed experimental assessment of the effect of the thickness of flat energy directors (ED) on heat generation at the interface during ultrasonic welding. Power and displacement data showed clear differences caused by the change of thickness, related to heat concentration at the weld line during the process. The extent of the heat-affected zone was assessed by welding specimens without consolidation at different stages of the process. It was confirmed through optical microscopy that heat is generated at the interface and transferred to the bulk adherends earlier in the process for thinner ED. The analysis of their fracture surface under optimum welding conditions revealed signs of matrix degradation, leading to less consistent quality, likely due to faster heat generation rate in both the ED and the substrates, and incidentally, higher temperatures surrounding the energy director.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasonic welding of CF/PPS composites with integrated triangular energy directors: melting, flow and weld strength development

This paper presents a fully experimental study on melting, flow and weld strength development during ultrasonic welding of CF/PPS composites with integrated triangular energy directors. The main goal of this research was assessing whether the heating time to achieve maximum weld strength could be significantly reduced as compared to ultrasonic welding with flat energy directors. The main conclu...

متن کامل

Process and Performance Evaluation of Ultrasonic, Induction and Resistance Welding of Advanced Thermoplastic Composites

The possibility of assembling through welding is one of the major features of thermoplastic composites and it positively contributes to their cost-effectiveness in manufacturing. This paper presents a comparative evaluation of ultrasonic, induction and resistance welding of individual CF/PPS thermoplastic composite samples that comprises an analysis of the static and dynamic mechanical behaviou...

متن کامل

Ultrasonic welding of thermoset matrix composites reinforced with glass fibers using a co-cured retaining layer

In this paper, ultrasonic welding of glass fiber reinforced thermoses, co-cured whit a thermoplastic has been studied. Co-curing process forms a connection between the thermoset and the thermoplastic while curing the composite. Considering that the calculated stress should not be related to the dimensions of the sample, a horn with a tip dimension smaller than the standard overlap was used. The...

متن کامل

Ultrasonic welding of thermoset matrix composites reinforced with glass fibers using a co-cured retaining layer

In this paper, ultrasonic welding of glass fiber reinforced thermoses, co-cured whit a thermoplastic has been studied. Co-curing process forms a connection between the thermoset and the thermoplastic while curing the composite. Considering that the calculated stress should not be related to the dimensions of the sample, a horn with a tip dimension smaller than the standard overlap was used. The...

متن کامل

Effect of Welding Heat Input on the Intermetallic Compound Layer and Mechanical Properties in Arc Welding-brazing Dissimilar Joining of Aluminum Alloy to Galvanized Steel

The effect of weld heat input on the formation of intermetallic compound (IMCs) layer during arc welding–brazing of aluminium and steel dissimilar alloys, was investigated through both finite element method (FEM) numerical simulations and experimental measurements. The results of FEM analysis as well as welding experiments indicated that increasing weld heat input increases the thickness of IMC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017